REFERENCES ON MORINGA AND COVID-19 LISTED BY SUBJECT


ACE Inhibition and COVID-19

Danser, A., Epstein, M., & Batlle, D. (2020). Renin-Angiotensin System Blockers and the COVID-19 Pandemic: At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension (Dallas, Tex. : 1979), HYPERTENSIONAHA12015082. Advance online publication. https://doi.org/10.1161/HYPERTENSIONAHA.120.15082

Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circulation research, 10.1161/CIRCRESAHA.120.317015. Advance online publication. https://doi.org/10.1161/CIRCRESAHA.120.317015

Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, T. S., Herrler, G., Wu, N. H., Nitsche, A., Müller, M. A., Drosten, C., & Pöhlmann, S. (2020). SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, . Advance online publication. https://doi.org/10.1016/j.cell.2020.02.052

Iaccarino, G., Borghi, C., Cicero, A., Ferri, C., Minuz, P., Muiesan, M. L., Mulatero, P., Mulè, G., Pucci, G., Salvetti, M., Savoia, C., Sechi, L. A., Volpe, M., & Grassi, G. (2020). Renin-Angiotensin System Inhibition in Cardiovascular Patients at the Time of COVID19: Much Ado for Nothing? A Statement of Activity from the Directors of the Board and the Scientific Directors of the Italian Society of Hypertension. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 10.1007/s40292-020-00380-3. Advance online publication. https://doi.org/10.1007/s40292-020-00380-3

Li, S. R., Tang, Z. J., Li, Z. H., & Liu, X. (2020). Searching therapeutic strategy of new coronavirus pneumonia from angiotensin-converting enzyme 2: the target of COVID-19 and SARS-CoV. European journal of clinical microbiology & infectious diseases : official publication of the European Society of Clinical Microbiology, 10.1007/s10096-020-03883-y. Advance online publication. https://doi.org/10.1007/s10096-020-03883-y

Sargiacomo, C., Sotgia, F., & Lisanti, M. P. (2020). COVID-19 and chronological aging: senolytics and other anti-aging drugs for the treatment or prevention of corona virus infection? Aging, 10.18632/aging.103001.  Advance online publication. https://doi.org/10.18632/aging.103001

Sun, M. L., Yang, J. M., Sun, Y. P., & Su, G. H. (2020). Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 43(3), 219–222. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.016

Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K. Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, S0092-8674(20)30338-X. Advance online publication. https://doi.org/10.1016/j.cell.2020.03.045

Walls, A. C., Park, Y. J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, . Advance online publication. https://doi.org/10.1016/j.cell.2020.02.058

Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., Zheng, X. S., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7

 

ACE Inhibition Properties of Moringa

Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018a). Amino acid composition and antioxidant properties of Moringa oleifera seed protein isolate and enzymatic hydrolysates. Heliyon, 4(10), e00877. https://doi.org/10.1016/j.heliyon.2018.e00877

Aderinola, T. A., Fagbemi, T. N., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018b). In vitro antihypertensive and antioxidative properties of trypsin-derived Moringa oleifera seed globulin hydrolyzate and its membrane fractions. Food science & nutrition, 7(1), 132–138. https://doi.org/10.1002/fsn3.826

Khan, H., Jaiswal, V., Kulshreshtha, S., & Khan, A. (2019). Potential Angiotensin Converting Enzyme Inhibitors from Moringa oleifera. Recent patents on biotechnology, 13(3), 239–248. https://doi.org/10.2174/1872208313666190211114229

 

Anti-diabetic Properties of Moringa

Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int. 2015;2015:381040. https://doi.org/10.1155/2015/381040

Araújo, L. C., Aguiar, J. S., Napoleão, T. H., Mota, F. V., Barros, A. L., Moura, M. C., Coriolano, M. C., Coelho, L. C., Silva, T. G., & Paiva, P. M. (2013). Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PloS one, 8(12), e81973. https://doi.org/10.1371/journal.pone.0081973

Ahmad, J., Khan, I., & Blundell, R. (2019). Moringa oleifera and glycemic control: A review of current evidence and possible mechanisms. Phytotherapy research : PTR, 33(11), 2841–2848. https://doi.org/10.1002/ptr.6473

Aa, A. B., Om, J., Ts, E., & Ga, A. (2017). Preliminary phytochemical screening, antioxidant and antihyperglycaemic activity of Moringa oleifera leaf extracts. Pakistan journal of pharmaceutical sciences, 30(6), 2217–2222.

González Garza, N. G., Chuc Koyoc, J. A., Torres Castillo, J. A., García Zambrano, E. A., Betancur Ancona, D., Chel Guerrero, L., & Sinagawa García, S. R. (2017). Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). Journal of food science and technology, 54(13), 4268–4276. https://doi.org/10.1007/s13197-017-2898-8

Joung, H., Kim, B., Park, H., Lee, K., Kim, H. H., Sim, H. C., Do, H. J., Hyun, C. K., & Do, M. S. (2017). Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice. Journal of medicinal food, 20(5), 439–447. https://doi.org/10.1089/jmf.2016.3860

Omodanisi EI, Aboua YG, Chegou NN, Oguntibeju OO. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacognosy Res. 2017;9(2):182-187. https://doi.org/10.4103/0974-8490.204651

Omodanisi, E. I., Aboua, Y. G., & Oguntibeju, O. O. (2017). Assessment of the Anti-Hyperglycaemic, Anti-Inflammatory and Antioxidant Activities of the Methanol Extract of Moringa Oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules (Basel, Switzerland), 22(4), 439. https://doi.org/10.3390/molecules22040439

Sun C, Li W, Liu Y, et al. In vitro/in vivo hepatoprotective properties of 1-O-(4-hydroxymethylphenyl)-α-L-rhamnopyranoside from Moringa oleifera seeds against carbon tetrachloride-induced hepatic injury. Food Chem Toxicol. 2019;131:110531. https://doi.org/10.1016/j.fct.2019.05.039

Toma, A., Makonnen, E., Mekonnen, Y., Debella, A., & Adisakwattana, S. (2015). Antidiabetic activities of aqueous ethanol and n-butanol fraction of Moringa stenopetala leaves in streptozotocin-induced diabetic rats. BMC complementary and alternative medicine, 15, 242. https://doi.org/10.1186/s12906-015-0779-0

Vargas-Sánchez, K., Garay-Jaramillo, E., & González-Reyes, R. E. (2019). Effects of Moringa oleifera on Glycaemia and Insulin Levels: A Review of Animal and Human Studies. Nutrients, 11(12), 2907. https://doi.org/10.3390/nu11122907

 

Anti-hypertensive Activities of Moringa

Aekthammarat, D., Pannangpetch, P., & Tangsucharit, P. (2019). Moringa oleifera leaf extract lowers high blood pressure by alleviating vascular dysfunction and decreasing oxidative stress in L-NAME hypertensive rats. Phytomedicine : international journal of phytotherapy and phytopharmacology, 54, 9–16. https://doi.org/10.1016/j.phymed.2018.10.023

Attakpa, E. S., Bertin, G. A., Chabi, N. W., Ategbo, J. M., Seri, B., & Khan, N. A. (2017). Moringa oleifera-rich diet and T cell calcium signaling in spontaneously hypertensive rats. Physiological research, 66(5), 753–767. https://doi.org/10.33549/physiolres.933397

Faizi, S., Siddiqui, B. S., Saleem, R., Siddiqui, S., Aftab, K., & Gilani, A. H. (1994). Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. Journal of natural products, 57(9), 1256–1261. https://doi.org/10.1021/np50111a011

Geleta, B., Makonnen, E., Debella, A., & Tadele, A. (2016). In vivo Antihypertensive and Antihyperlipidemic Effects of the Crude Extracts and Fractions of Moringa stenopetala (Baker f.) Cufod. Leaves in Rats. Frontiers in pharmacology, 7, 97. https://doi.org/10.3389/fphar.2016.00097

González Garza, N. G., Chuc Koyoc, J. A., Torres Castillo, J. A., García Zambrano, E. A., Betancur Ancona, D., Chel Guerrero, L., & Sinagawa García, S. R. (2017). Biofunctional properties of bioactive peptide fractions from protein isolates of moringa seed (Moringa oleifera). Journal of food science and technology, 54(13), 4268–4276. https://doi.org/10.1007/s13197-017-2898-8

Khan, H., Jaiswal, V., Kulshreshtha, S., & Khan, A. (2019). Potential Angiotensin Converting Enzyme Inhibitors from Moringa oleifera. Recent patents on biotechnology, 13(3), 239–248. https://doi.org/10.2174/1872208313666190211114229

Mengistu, M., Abebe, Y., Mekonnen, Y., & Tolessa, T. (2012). In vivo and in vitro hypotensive effect of aqueous extract of Moringa stenopetala. African health sciences, 12(4), 545–551

Safaeian, L., Asghari, G., Javanmard, S. H., & Heidarinejad, A. (2015). The effect of hydroalcoholic extract from the leaves of Moringa peregrina (Forssk.) Fiori. on blood pressure and oxidative status in dexamethasone-induced hypertensive rats. Advanced biomedical research, 4, 101. https://doi.org/10.4103/2277-9175.156681

 

 

Anti-inflammatory and Immunolmodulatory Properties of Moringa

Abd Rani, N. Z., Kumolosasi, E., Jasamai, M., Jamal, J. A., Lam, K. W., & Husain, K. (2019). In vitro anti-allergic activity of Moringa oleifera Lam. extracts and their isolated compounds. BMC complementary and alternative medicine, 19(1), 361. https://doi.org/10.1186/s12906-019-2776-1

Abdel-Daim, M. M., Khalil, S. R., Awad, A., Abu Zeid, E. H., El-Aziz, R. A., & El-Serehy, H. A. (2020). Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients, 12(4), 1031. https://doi.org/10.3390/nu12041031

Abdel-Latif, M., El-Shahawi, G., Aboelhadid, S. M., & Abdel-Tawab, H. (2018). Modulation of murine intestinal immunity by Moringa oleifera extract in experimental hymenolepiasis nana. Journal of helminthology, 92(2), 142–153. https://doi.org/10.1017/S0022149X17000293

Aboelsoued, D., Toaleb, N. I., Abdel Megeed, K. N., Hassan, S. E., & Ibrahim, S. (2019). Cellular immune response and scanning electron microscopy in the evaluation of Moringa leaves aqueous extract effect on Cryptosporidium parvum in buffalo intestinal tissue explants. Journal of parasitic diseases : official organ of the Indian Society for Parasitology, 43(3), 393–401. https://doi.org/10.1007/s12639-019-01103-9

Albasher G, Al Kahtani S, Alwahibi MS, Almeer R. Effect of Moringa oleifera Lam. methanolic extract on lead-induced oxidative stress-mediated hepatic damage and inflammation in rats. Environ Sci Pollut Res Int. 2020;27(16):19877-19887. https://doi.org/10.1007/s11356-020-08525-6

Almatrafi, M. M., Vergara-Jimenez, M., Murillo, A. G., Norris, G. H., Blesso, C. N., & Fernandez, M. L. (2017). Moringa Leaves Prevent Hepatic Lipid Accumulation and Inflammation in Guinea Pigs by Reducing the Expression of Genes Involved in Lipid Metabolism. International journal of molecular sciences, 18(7), 1330. https://doi.org/10.3390/ijms18071330

Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. Biomed Res Int. 2015;2015:381040. https://doi.org/10.1155/2015/381040

Araújo, L. C., Aguiar, J. S., Napoleão, T. H., Mota, F. V., Barros, A. L., Moura, M. C., Coriolano, M. C., Coelho, L. C., Silva, T. G., & Paiva, P. M. (2013). Evaluation of cytotoxic and anti-inflammatory activities of extracts and lectins from Moringa oleifera seeds. PloS one, 8(12), e81973. https://doi.org/10.1371/journal.pone.0081973

Arulselvan, P., Tan, W. S., Gothai, S., Muniandy, K., Fakurazi, S., Esa, N. M., Alarfaj, A. A., & Kumar, S. S. (2016). Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages. Molecules (Basel, Switzerland), 21(11), 1452. https://doi.org/10.3390/molecules21111452

Bhattacharya, A., Tiwari, P., Sahu, P. K., and Kumar, S. (2018). A Review of the Phytochemical and Pharmacological Characteristics of Moringa oleifera. Journal of pharmacy & bioallied sciences, 10(4), 181–191.  https://doi.org/10.4103/JPBS.JPBS_126_18

Cheng, D., Gao, L., Su, S., Sargsyan, D., Wu, R., Raskin, I., & Kong, A. N. (2019). Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. The AAPS journal, 21(2), 31. https://doi.org/10.1208/s12248-019-0301-6

Cheng, D., Gao, L., Su, S., Sargsyan, D., Wu, R., Raskin, I., & Kong, A. N. (2019). Moringa Isothiocyanate Activates Nrf2: Potential Role in Diabetic Nephropathy. The AAPS journal, 21(2), 31. https://doi.org/10.1208/s12248-019-0301-6

Cheng WN, Jeong CH, Seo HG, Han SG. Moringa Extract Attenuates Inflammatory Responses and Increases Gene Expression of Casein in Bovine Mammary Epithelial Cells. Animals (Basel). 2019;9(7):391. Published 2019 Jun 26. https://doi.org/10.3390/ani9070391

Chin, C. Y., Ng, P. Y., & Ng, S. F. (2019). Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: in vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug delivery and translational research, 9(2), 453–468. https://doi.org/10.1007/s13346-018-0510-z

Choi EJ, Debnath T, Tang Y, Ryu YB, Moon SH, Kim EK. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance. Biomed Pharmacother. 2016;84:870-877. https://doi.org/10.1016/j.biopha.2016.09.085

Coriolano, M. C., de Santana Brito, J., de Siqueira Patriota, L. L., de Araujo Soares, A. K., de Lorena, V., Paiva, P., Napoleao, T. H., Coelho, L., & de Melo, C. (2018). Immunomodulatory Effects of the Water-soluble Lectin from Moringa oleifera Seeds (WSMoL) on Human Peripheral Blood Mononuclear Cells (PBMC). Protein and peptide letters, 25(3), 295–301. https://doi.org/10.2174/0929866525666180130141736

Cui, C., Chen, S., Wang, X., Yuan, G., Jiang, F., Chen, X., and Wang, L. (2019). Characterization of Moringa oleifera roots polysaccharide MRP-1 with anti-inflammatory effect. International journal of biological macromolecules, 132, 844–851. https://doi.org/10.1016/j.ijbiomac.2019.03.210

El Shanawany EE, Fouad EA, Keshta HG, Hassan SE, Hegazi AG, Abdel-Rahman EH. Immunomodulatory effects of Moringa oleifera leaves aqueous extract in sheep naturally co-infected with Fasciola gigantica and Clostridium novyi. J Parasit Dis. 2019;43(4):583-591. https://doi.org/10.1007/s12639-019-01130-6

Famurewa AC, Aja PM, Nwankwo OE, Awoke JN, Maduagwuna EK, Aloke C. Moringa oleifera seed oil or virgin coconut oil supplementation abrogates cerebral neurotoxicity induced by antineoplastic agent methotrexate by suppression of oxidative stress and neuro-inflammation in rats. J Food Biochem. 2019;43(3):e12748. https://doi.org/10.1111/jfbc.12748

Feustel, S., Ayón-Pérez, F., Sandoval-Rodriguez, A., Rodríguez-Echevarría, R., Contreras-Salinas, H., Armendáriz-Borunda, J., & Sánchez-Orozco, L. V. (2017). Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells. Journal of immunology research, 2017, 6063850. https://doi.org/10.1155/2017/6063850

Galuppo, M., Giacoppo, S., Iori, R., De Nicola, G. R., Milardi, D., Bramanti, P., & Mazzon, E. (2015). 4(α-L-RHAMNOSYLOXY)-BENZYL ISOTHIOCYANATE, A BIOACTIVE PHYTOCHEMICAL THAT DEFENDS CEREBRAL TISSUE AND PREVENTS SEVERE DAMAGE INDUCED BY FOCAL ISCHEMIA/REPERFUSION. Journal of biological regulators and homeostatic agents, 29(2), 343–356.

Giacoppo S, Iori R, Bramanti P, Mazzon E. Topical moringin-cream relieves neuropathic pain by suppression of inflammatory pathway and voltage-gated ion channels in murine model of multiple sclerosis. Mol Pain. 2017;13:1744806917724318. https://doi.org/10.1177/1744806917724318

Giacoppo S, Rajan TS, De Nicola GR, et al. The Isothiocyanate Isolated from Moringa oleifera Shows Potent Anti-Inflammatory Activity in the Treatment of Murine Subacute Parkinson’s Disease. Rejuvenation Res. 2017;20(1):50-63. https://doi.org/10.1089/rej.2016.1828

Giacoppo, S., Rajan, T. S., Iori, R., Rollin, P., Bramanti, P., & Mazzon, E. (2017). The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition. Inflammation research : official journal of the European Histamine Research Society … [et al.], 66(6), 487–503. https://doi.org/10.1007/s00011-017-1033-7

Jaja-Chimedza, A., Graf, B. L., Simmler, C., Kim, Y., Kuhn, P., Pauli, G. F., & Raskin, I. (2017). Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract. PloS one, 12(8), e0182658. https://doi.org/10.1371/journal.pone.0182658

Joung, H., Kim, B., Park, H., Lee, K., Kim, H. H., Sim, H. C., Do, H. J., Hyun, C. K., & Do, M. S. (2017). Fermented Moringa oleifera Decreases Hepatic Adiposity and Ameliorates Glucose Intolerance in High-Fat Diet-Induced Obese Mice. Journal of medicinal food, 20(5), 439–447. https://doi.org/10.1089/jmf.2016.3860

Karthivashan, G., Kura, A. U., Arulselvan, P., Md Isa, N., & Fakurazi, S. (2016). The modulatory effect of Moringa oleifera leaf extract on endogenous antioxidant systems and inflammatory markers in an acetaminophen-induced nephrotoxic mice model. PeerJ, 4, e2127. https://doi.org/10.7717/peerj.2127

Kim, Y., Wu, A. G., Jaja-Chimedza, A., Graf, B. L., Waterman, C., Verzi, M. P., & Raskin, I. (2017). Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice. PloS one, 12(9), e0184709. https://doi.org/10.1371/journal.pone.0184709

Kooltheat N, Sranujit RP, Chumark P, Potup P, Laytragoon-Lewin N, Usuwanthim K. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients. 2014;6(2):697-710. Published 2014 Feb 18. https://doi.org/10.3390/nu6020697

Lee HJ, Jeong YJ, Lee TS, et al. Moringa fruit inhibits LPS-induced NO/iNOS expression through suppressing the NF-κ B activation in RAW264.7 cells. Am J Chin Med. 2013;41(5):1109-1123. https://doi.org/10.1142/S0192415X13500754

Liao, P. C., Lai, M. H., Hsu, K. P., Kuo, Y. H., Chen, J., Tsai, M. C., Li, C. X., Yin, X. J., Jeyashoke, N., & Chao, L. K. (2018). Identification of β-Sitosterol as in Vitro Anti-Inflammatory Constituent in Moringa oleifera. Journal of agricultural and food chemistry, 66(41), 10748–10759. https://doi.org/10.1021/acs.jafc.8b04555

Ma, N., Tang, Q., Wu, W. T., Huang, X. A., Xu, Q., Rong, G. L., Chen, S., & Song, J. P. (2018). Three Constituents of Moringa oleifera Seeds Regulate Expression of Th17-Relevant Cytokines and Ameliorate TPA-Induced Psoriasis-Like Skin Lesions in Mice. Molecules (Basel, Switzerland), 23(12), 3256. https://doi.org/10.3390/molecules23123256

Mabrok, H. B., & Mohamed, M. S. (2019). Induction of COX-1, suppression of COX-2 and pro-inflammatory cytokines gene expression by moringa leaves and its aqueous extract in aspirin-induced gastric ulcer rats. Molecular biology reports, 46(4), 4213–4224. https://doi.org/10.1007/s11033-019-04874-9

Mahajan SG, Banerjee A, Chauhan BF, Padh H, Nivsarkar M, Mehta AA. Inhibitory effect of n-butanol fraction of Moringa oleifera Lam. seeds on ovalbumin-induced airway inflammation in a guinea pig model of asthma. Int J Toxicol. 2009;28(6):519-527. https://doi.org/10.1177/1091581809345165

Mahajan SG, Mehta AA. Effect of Moringa oleifera Lam. seed extract on ovalbumin-induced airway inflammation in guinea pigs. Inhal Toxicol. 2008;20(10):897-909. https://doi.org/10.1080/08958370802027443

Mahajan SG, Mali RG, Mehta AA. Protective Effect of Ethanolic Extract of Seeds of Moringa oleifera Lam. Against Inflammation Associated with Development of Arthritis in Rats. J Immunotoxicol. 2007;4(1):39-47. https://doi.org/10.1080/15476910601115184

Mansour, A. T., Miao, L., Espinosa, C., García-Beltrán, J. M., Ceballos Francisco, D. C., & Esteban, M. Á. (2018). Effects of dietary inclusion of Moringa oleifera leaves on growth and some systemic and mucosal immune parameters of seabream. Fish physiology and biochemistry, 44(4), 1223–1240. https://doi.org/10.1007/s10695-018-0515-z

Michl C, Vivarelli F, Weigl J, et al. The Chemopreventive Phytochemical Moringin Isolated from Moringa oleifera Seeds Inhibits JAK/STAT Signaling. PLoS One. 2016;11(6):e0157430. Published 2016 Jun 15. https://doi.org/10.1371/journal.pone.0157430

Muangnoi C, Chingsuwanrote P, Praengamthanachoti P, Svasti S, Tuntipopipat S. Moringa oleifera pod inhibits inflammatory mediator production by lipopolysaccharide-stimulated RAW 264.7 murine macrophage cell lines. Inflammation. 2012;35(2):445-455. https://doi.org/10.1007/s10753-011-9334-4

Omodanisi EI, Aboua YG, Chegou NN, Oguntibeju OO. Hepatoprotective, Antihyperlipidemic, and Anti-inflammatory Activity of Moringa oleifera in Diabetic-induced Damage in Male Wistar Rats. Pharmacognosy Res. 2017;9(2):182-187. https://doi.org/10.4103/0974-8490.204651

Omodanisi, E. I., Aboua, Y. G., & Oguntibeju, O. O. (2017). Assessment of the Anti-Hyperglycaemic, Anti-Inflammatory and Antioxidant Activities of the Methanol Extract of Moringa Oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules (Basel, Switzerland), 22(4), 439. https://doi.org/10.3390/molecules22040439

Rajan, T. S., Giacoppo, S., Iori, R., De Nicola, G. R., Grassi, G., Pollastro, F., Bramanti, P., & Mazzon, E. (2016). Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages. Fitoterapia, 112, 104–115. https://doi.org/10.1016/j.fitote.2016.05.008

Pilotos, J., Ibrahim, K. A., Mowa, C. N., & Opata, M. M. (2020). Moringa oleifera treatment increases Tbet expression in CD4+ T cells and remediates immune defects of malnutrition in Plasmodium chabaudi-infected mice. Malaria journal, 19(1), 62. https://doi.org/10.1186/s12936-020-3129-8

Saleem A, Saleem M, Akhtar MF, Shahzad M, Jahan S. Moringa rivae leaf extracts attenuate Complete Freund’s adjuvant-induced arthritis in Wistar rats via modulation of inflammatory and oxidative stress biomarkers [published correction appears in Inflammopharmacology. 2019 Sep 4;:]. Inflammopharmacology. 2020;28(1):139-151. https://doi.org/10.1007/s10787-019-00596-3

Erratum: Correction to: Moringa oleifera leaf extracts attenuate Complete Freund’s adjuvant-induced arthritis in Wistar rats via modulation of inflammatory and oxidative stress biomarkers.

Sashidhara KV, Rosaiah JN, Tyagi E, Shukla R, Raghubir R, Rajendran SM. Rare dipeptide and urea derivatives from roots of Moringa oleifera as potential anti-inflammatory and antinociceptive agents. Eur J Med Chem. 2009;44(1):432-436. https://doi.org/10.1016/j.ejmech.2007.12.018

Tamrat, Y., Nedi, T., Assefa, S., Teklehaymanot, T., & Shibeshi, W. (2017). Anti-inflammatory and analgesic activities of solvent fractions of the leaves of Moringa stenopetala Bak. (Moringaceae) in mice models. BMC complementary and alternative medicine, 17(1), 473. https://doi.org/10.1186/s12906-017-1982-y

Tan, W. S., Arulselvan, P., Karthivashan, G., & Fakurazi, S. (2015). Moringa oleifera Flower Extract Suppresses the Activation of Inflammatory Mediators in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages via NF-κB Pathway. Mediators of inflammation, 2015, 720171. https://doi.org/10.1155/2015/720171

Waterman, C., Cheng, D. M., Rojas-Silva, P., Poulev, A., Dreifus, J., Lila, M. A., & Raskin, I. (2014). Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochemistry, 103, 114–122. https://doi.org/10.1016/j.phytochem.2014.03.028

Xie, H., Zhao, J., Lian, N., Lin, S., Xie, Q., & Zhuo, H. (2020). Clinical characteristics of Non-ICU hospitalized patients with coronavirus disease 2019 and liver injury: A Retrospective study. Liver International: Official journal of the International Association for the Study of the Liver, 10.1111/liv.14449. Advance online publication. https://doi.org/10.1111/liv.14449

Antimicrobial Activity of Moringa (Non-Viral Agents)

Oliveira, J., Souza, P., Vasconcelos, I. M., Dias, L. P., Martins, T. F., Van Tilburg, M. F., Guedes, M., & Sousa, D. (2019). Mo-CBP3-PepI, Mo-CBP3-PepII, and Mo-CBP3-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 157, 10–21. https://doi.org/10.1016/j.biochi.2018.10.016

Zaffer, M., Ahmad, S., Sharma, R., Mahajan, S., Gupta, A., & Agnihotri, R. K. (2014). Antibacterial activity of bark extracts of Moringa oleifera Lam. against some selected bacteria. Pakistan journal of pharmaceutical sciences, 27(6), 1857–1862.

 

Antiviral Activity of Moringa

Feustel, S., Ayón-Pérez, F., Sandoval-Rodriguez, A., Rodríguez-Echevarría, R., Contreras-Salinas, H., Armendáriz-Borunda, J., & Sánchez-Orozco, L. V. (2017). Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells. Journal of immunology research, 2017, 6063850. https://doi.org/10.1155/2017/6063850

Guevara, A. P., Vargas, C., Sakurai, H., Fujiwara, Y., Hashimoto, K., Maoka, T., Kozuka, M., Ito, Y., Tokuda, H., & Nishino, H. (1999). An antitumor promoter from Moringa oleifera Lam. Mutation research, 440(2), 181–188. https://doi.org/10.1016/s1383-5718(99)00025-x

Hussain, S., Malik, F., & Mahmood, S. (2014). Review: an exposition of medicinal preponderance of Moringa oleifera (Lank.). Pakistan journal of pharmaceutical sciences, 27(2), 397–403.

Lipipun, V., Kurokawa, M., Suttisri, R., Taweechotipatr, P., Pramyothin, P., Hattori, M., & Shiraki, K. (2003). Efficacy of Thai medicinal plant extracts against herpes simplex virus type 1 infection in vitro and in vivo. Antiviral research, 60(3), 175–180. https://doi.org/10.1016/s0166-3542(03)00152-9

Kurokawa, M., Wadhwani, A., Kai, H., Hidaka, M., Yoshida, H., Sugita, C., Watanabe, W., Matsuno, K., & Hagiwara, A. (2016). Activation of Cellular Immunity in Herpes Simplex Virus Type 1-Infected Mice by the Oral Administration of Aqueous Extract of Moringa oleifera Lam. Leaves. Phytotherapy research : PTR, 30(5), 797–804. https://doi.org/10.1002/ptr.5580

Murakami, A., Kitazono, Y., Jiwajinda, S., Koshimizu, K., & Ohigashi, H. (1998). Niaziminin, a thiocarbamate from the leaves of Moringa oleifera, holds a strict structural requirement for inhibition of tumor-promoter-induced Epstein-Barr virus activation. Planta medica, 64(4), 319–323. https://doi.org/10.1055/s-2006-957442

Nworu CS, Okoye E, Ezeifeka, GO. (2013). Extracts of Moringa oleifera Lam. showing inhibitory activity against early steps in the infectivity of HIV-1 lentiviral particles in a viral vector-based screening. African journal of biotechnology, 12, 4866-4873.

Samineni, L., Xiong, B., Chowdhury, R., Pei, A., Kuehster, L., Wang, H., Dickey, R., Soto, P. E., Massenburg, L., Nguyen, T. H., Maranas, C., Velegol, D., Kumar, M., & Velegol, S. (2019). 7 Log Virus Removal in a Simple Functionalized Sand Filter. Environmental science & technology, 53(21), 12706–12714. https://doi.org/10.1021/acs.est.9b03734

Soltan, M. M., & Zaki, A. K. (2009). Antiviral screening of forty-two Egyptian medicinal plants. Journal of ethnopharmacology, 126(1), 102–107. https://doi.org/10.1016/j.jep.2009.08.001

Suarez, M., Entenza, J. M., Doerries, C., Meyer, E., Bourquin, L., Sutherland, J., Marison, I., Moreillon, P., & Mermod, N. (2003). Expression of a plant-derived peptide harboring water-cleaning and antimicrobial activities. Biotechnology and bioengineering, 81(1), 13–20. https://doi.org/10.1002/bit.10550

Suarez, M., Haenni, M., Canarelli, S., Fisch, F., Chodanowski, P., Servis, C., Michielin, O., Freitag, R., Moreillon, P., & Mermod, N. (2005). Structure-function characterization and optimization of a plant-derived antibacterial peptide. Antimicrobial agents and chemotherapy, 49(9), 3847–3857. https://doi.org/10.1128/AAC.49.9.3847-3857.2005

Sujitha, V., Murugan, K., Paulpandi, M., Panneerselvam, C., Suresh, U., Roni, M., Nicoletti, M., Higuchi, A., Madhiyazhagan, P., Subramaniam, J., Dinesh, D., Vadivalagan, C., Chandramohan, B., Alarfaj, A. A., Munusamy, M. A., Barnard, D. R., & Benelli, G. (2015). Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitology research, 114(9), 3315–3325. https://doi.org/10.1007/s00436-015-4556-2

Younus, I., Siddiq, A., Ishaq, H., Anwer, L., Badar, S., & Ashraf, M. (2016). Evaluation of antiviral activity of plant extracts against foot and mouth disease virus in vitro. Pakistan journal of pharmaceutical sciences, 29(4), 1263–1268.

Younus, I., Ashraf, M., Fatima, A., Altaf, I., & Javeed, A. (2017). Evaluation of cytotoxic and antiviral activities of aqueous leaves extracts of different plants against foot and mouth disease virus infection in farming animals. Pakistan journal of pharmaceutical sciences, 30(6), 2165–2172.

Waiyaput, W., Payungporn, S., Issara-Amphorn, J., & Panjaworayan, N. T. (2012). Inhibitory effects of crude extracts from some edible Thai plants against replication of hepatitis B virus and human liver cancer cells. BMC complementary and alternative medicine, 12, 246. https://doi.org/10.1186/1472-6882-12-246

WHO (World Health Organization).  (2020a).  Naming the coronavirus disease (COVID-19) and the virus that causes it.  https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it [Accessed 08April 2020].

 

Drug Screening and Development for COVID-19

Bozick, B.  2020.  E-mail communication received on April 4, 2020 from Brooke Bozick, Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, U.S. Department of Health and Human Services.

Farzan, M.  2020.  E-mail communication received on April 16, 2020 from Michael Farzan, Scripps Research Institute, Jupiter, Florida.

Ma, J., Huo, X. Q., Chen, X., Zhu, W. X., Yao, M. C., Qiao, Y. J., & Zhang, Y. L. (2020). Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 45(6), 1219–1224. https://doi.org/10.19540/j.cnki.cjcmm.20200216.401

Niu, M., Wang, R. L., Wang, Z. X., Zhang, P., Bai, Z. F., Jing, J., Guo, Y. M., Zhao, X., Zhan, X. Y., Zhang, Z. T., Song, X. A., Qin, E. Q., Wang, J. B., & Xiao, X. H. (2020). Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 45(6), 1213–1218. https://doi.org/10.19540/j.cnki.cjcmm.20200206.501

Tu, Y. F., Chien, C. S., Yarmishyn, A. A., Lin, Y. Y., Luo, Y. H., Lin, Y. T., Lai, W. Y., Yang, D. M., Chou, S. J., Yang, Y. P., Wang, M. L., & Chiou, S. H. (2020). A Review of SARS-CoV-2 and the Ongoing Clinical Trials. International journal of molecular sciences, 21(7), E2657. https://doi.org/10.3390/ijms21072657

 

Interactions of Moringa with Other Antiviral Therapies

Gurmu, AE., Teni, F. S., Tadesse, W. T. (2017). Pattern of Traditional Medicine Utilization among HIV/AIDS Patients on Antiretroviral Therapy at a University Hospital in Northwestern Ethiopia: A Cross-Sectional Study. Evidence-based complementary and alternative medicine : eCAM, 2017, 1724581. https://doi.org/10.1155/2017/1724581

Monera, T. G., and Maponga, C. C. (2012). Prevalence and patterns of Moringa oleifera use among HIV positive patients in Zimbabwe: a cross-sectional survey. Journal of public health in Africa, 3(1), e6. https://doi.org/10.4081/jphia.2012.e6

Monera-Penduka, T. G., Maponga, C. C., Morse, G. D., & Nhachi, C. (2017). Capacity for ethical and regulatory review of herbal trials in developing countries: a case study of Moringa oleifera research in HIV-infected patients. Journal of pharmaceutical policy and practice, 10, 9. https://doi.org/10.1186/s40545-017-0099-5

Monera, T. G., Wolfe, A. R., Maponga, C. C., Benet, L. Z., & Guglielmo, J. (2008). Moringa oleifera leaf extracts inhibit 6beta-hydroxylation of testosterone by CYP3A4. Journal of infection in developing countries, 2(5), 379–383. https://doi.org/10.3855/jidc.201

Monera-Penduka, T. G., Maponga, C. C., Wolfe, A. R., Wiesner, L., Morse, G. D., & Nhachi, C. F. (2017). Effect of Moringa oleifera Lam. leaf powder on the pharmacokinetics of nevirapine in HIV-infected adults: a one sequence cross-over study. AIDS research and therapy, 14, 12. https://doi.org/10.1186/s12981-017-0140-4

Mudzviti, T., Maponga, C. C., Khoza, S., Ma, Q., & Morse, G. D. (2012). The impact of herbal drug use on adverse drug reaction profiles of patients on antiretroviral therapy in zimbabwe. AIDS research and treatment, 2012, 434171. https://doi.org/10.1155/2012/434171

 

Coronavirus Pandemic

CDC (U.S. Centers for Disease Control and Prevention).  (2020a).  Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19).   https://www.cdc.gov/coronavirus/2019-ncov/hcp/clinical-guidance-management-patients.html [Accessed 08 April 2020].

WHO (World Health Organization).  (2020a).  Naming the coronavirus disease (COVID-19) and the virus that causes it.  https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it [Accessed 08April 2020]

WHO (World Health Organization).  (2020b). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV).  https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) [Accessed 08 April 2020].

WHO (World Health Organization).  (2020b). Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV).  https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov) [Accessed 08 April 2020].

WHO (World Health Organization).  (2020c).  WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020.  https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020 [Accessed 08April 2020].

WHO (World Health Organization).  (2020d).  Coronavirus disease (COVID-19) Pandemic.   https://www.who.int/emergencies/diseases/novel-coronavirus-2019  [Accessed 08 April 2020].

 

COVID-19 Pathology and Comorbidities

Bansal M. (2020). Cardiovascular disease and COVID-19. Diabetes & metabolic syndrome, 14(3), 247–250. Advance online publication. https://doi.org/10.1016/j.dsx.2020.03.013

Chen, T., Wu, D., Chen, H., Yan, W., Yang, D., Chen, G., Ma, K., Xu, D., Yu, H., Wang, H., Wang, T., Guo, W., Chen, J., Ding, C., Zhang, X., Huang, J., Han, M., Li, S., Luo, X., Zhao, J., … Ning, Q. (2020b). Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ (Clinical research ed.), 368, m1091. https://doi.org/10.1136/bmj.m1091

Emami, A., Javanmardi, F., Pirbonyeh, N., & Akbari, A. (2020). Prevalence of Underlying Diseases in Hospitalized Patients with COVID-19: a Systematic Review and Meta-Analysis. Archives of academic emergency medicine, 8(1), e35.

Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA cardiology, e201017. Advance online publication. https://doi.org/10.1001/jamacardio.2020.1017

Guo, W., Li, M., Dong, Y., Zhou, H., Zhang, Z., Tian, C., Qin, R., Wang, H., Shen, Y., Du, K., Zhao, L., Fan, H., Luo, S., & Hu, D. (2020). Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes/metabolism research and reviews, e3319. Advance online publication. https://doi.org/10.1002/dmrr.3319

Inciardi, R. M., Lupi, L., Zaccone, G., Italia, L., Raffo, M., Tomasoni, D., Cani, D. S., Cerini, M., Farina, D., Gavazzi, E., Maroldi, R., Adamo, M., Ammirati, E., Sinagra, G., Lombardi, C. M., & Metra, M. (2020). Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA cardiology, 10.1001/jamacardio.2020.1096. Advance online publication. https://doi.org/10.1001/jamacardio.2020.1096

Lagunas-Rangel F. A. (2020). Neutrophil-to-Lymphocyte ratio and Lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Journal of medical virology, 10.1002/jmv.25819. Advance online publication. https://doi.org/10.1002/jmv.25819

Li, K., Wu, J., Wu, F., Guo, D., Chen, L., Fang, Z., & Li, C. (2020). The Clinical and Chest CT Features Associated with Severe and Critical COVID-19 Pneumonia. Investigative radiology, 10.1097/RLI.0000000000000672. Advance online publication. https://doi.org/10.1097/RLI.0000000000000672

Maddaloni, E., & Buzzetti, R. (2020). Covid-19 and diabetes mellitus: unveiling the interaction of two pandemics. Diabetes/metabolism research and reviews, e33213321. Advance online publication. https://doi.org/10.1002/dmrr.3321

Madjid, M., Safavi-Naeini, P., Solomon, S. D., & Vardeny, O. (2020). Potential Effects of Coronaviruses on the Cardiovascular System: A Review. JAMA cardiology, 10.1001/jamacardio.2020.1286. Advance online publication. https://doi.org/10.1001/jamacardio.2020.1286

Peng, Y. D., Meng, K., Guan, H. Q., Leng, L., Zhu, R. R., Wang, B. Y., He, M. A., Cheng, L. X., Huang, K., & Zeng, Q. T. (2020). Zhonghua xin xue guan bing za zhi, 48(0), E004. Advance online publication. https://doi.org/10.3760/cma.j.cn112148-20200220-00105

Sun, M. L., Yang, J. M., Sun, Y. P., & Su, G. H. (2020). Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases, 43(3), 219–222. https://doi.org/10.3760/cma.j.issn.1001-0939.2020.03.016

Yao, X. H., Li, T. Y., He, Z. C., Ping, Y. F., Liu, H. W., Yu, S. C., Mou, H. M., Wang, L. H., Zhang, H. R., Fu, W. J., Luo, T., Liu, F., Chen, C., Xiao, H. L., Guo, H. T., Lin, S., Xiang, D. F., Shi, Y., Li, Q. R., Huang, X., … Bian, X. W. (2020). Zhonghua bing li xue za zhi = Chinese journal of pathology, 49(0), E009. Advance online publication. https://doi.org/10.3760/cma.j.cn112151-20200312-00193

Wang, X., & Ding, Y. Q. (2020). Zhonghua bing li xue za zhi = Chinese journal of pathology, 49(0), E012. Advance online publication. https://doi.org/10.3760/cma.j.cn112151-20200318-00220

Wu, J., Wu, X., Zeng, W., Guo, D., Fang, Z., Chen, L., Huang, H., & Li, C. (2020). Chest CT Findings in Patients with Corona Virus Disease 2019 and its Relationship with Clinical Features. Investigative radiology, 10.1097/RLI.0000000000000670. Advance online publication. https://doi.org/10.1097/RLI.0000000000000670

Wujtewicz, M., Dylczyk-Sommer, A., Aszkiełowicz, A., Zdanowski, S., Piwowarczyk, S., & Owczuk, R. (2020). COVID-19 – what should anaethesiologists and intensivists know about it?. Anaesthesiology intensive therapy, 52(1), 34–41. https://doi.org/10.5114/ait.2020.93756

Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, S1201-9712(20)30136-3. Advance online publication. https://doi.org/10.1016/j.ijid.2020.03.017

Zhang, R., Wang, X., Ni, L., Di, X., Ma, B., Niu, S., Liu, C., & Reiter, R. J. (2020). COVID-19: Melatonin as a potential adjuvant treatment. Life sciences, 117583. Advance online publication. https://doi.org/10.1016/j.lfs.2020.117583

 

Nutritional Supplementation with Moringa of Patients Undergoing Antiretroviral Therapy

Tshingani, K., Donnen, P., Mukumbi, H., Duez, P., & Dramaix-Wilmet, M. (2017). Impact of Moringa oleifera lam. Leaf powder supplementation versus nutritional counseling on the body mass index and immune response of HIV patients on antiretroviral therapy: a single-blind randomized control trial. BMC complementary and alternative medicine, 17(1), 420. https://doi.org/10.1186/s12906-017-1920-z

Van Tienen, A., Hullegie, Y. M., Hummelen, R., Hemsworth, J., Changalucha, J., & Reid, G. (2011). Development of a locally sustainable functional food for people living with HIV in Sub-Saharan Africa: laboratory testing and sensory evaluation. Beneficial microbes, 2(3), 193–198. https://doi.org/10.3920/BM2011.0024

 

Popular Publications

Anonymous  (2020).  Tunisia herbalists cash in on coronavirus fear.  France 24. Issued on: 16/03/2020.  https://www.france24.com/en/20200316-tunisia-herbalists-cash-in-on-coronavirus-fear  [Accessed 20 April 2020].

Quieta M.  (2020).  UPDATED: Can malunggay help protect you from the Coronavirus Disease or COVID-19? GMA Entertainment (Philippines).  Updated March 10, 2020.  https://www.gmanetwork.com/entertainment/celebritylife/health/59211/can-malunggay-help-protect-you-from-the-novel-coronavirus/story [Accessed 02 April 2020].

Sambatyoy E.  (2020).  Malunggay Properties Boost Immune System to Help Fight Coronaviruses. Good News Pilipinas.  February 2, 2020.  https://www.goodnewspilipinas.com/malunggay-properties-boost-immune-system-to-help-fight-coronaviruses/ [Accessed April 2, 2020].

 

Safety and Contraindications

Monera-Penduka, T. G., Jani, Z. T., Maponga, C. C., Mudzengi, J., Morse, G. D., & Nhachi, C. F. (2016). Quality and labeling information of Moringa oleifera products marketed for HIV-infected people in Zimbabwe. Journal of public health in Africa, 7(2), 84–88. https://doi.org/10.4081/jphia.2016.618

Stohs, S. J., & Hartman, M. J. (2015). Review of the Safety and Efficacy of Moringa oleifera. Phytotherapy research : PTR, 29(6), 796–804. https://doi.org/10.1002/ptr.5325

Suarez, M., Haenni, M., Canarelli, S., Fisch, F., Chodanowski, P., Servis, C., Michielin, O., Freitag, R., Moreillon, P., & Mermod, N. (2005). Structure-function characterization and optimization of a plant-derived antibacterial peptide. Antimicrobial agents and chemotherapy, 49(9), 3847–3857. https://doi.org/10.1128/AAC.49.9.3847-3857.2005

 

Water and Wastewater Treatment

Bichi, M. A Review of the applications of Moringa oleifera seeds extract in water treatment. Civ. Environ. Res. 2013; 3. 1-11. https://www.researchgate.net/publication/288623137_A_Review_of_the_applications_of_Moringa_oleifera_seeds_extract_in_water_treatment

Centers for Disease Control and Prevention (CDC).  (2020d). Information for Sanitation and Wastewater Workers on COVID-19. [Accessed 06 July 2020] https://www.cdc.gov/coronavirus/2019-ncov/community/sanitation-wastewater-workers.html

Nghiem LD, Morgan B, Donner E., & Short MD. (2020). The COVID-19 pandemic: Considerations for the waste and wastewater services sector. Case Studies in Chemical and Environmental Engineering2020; 1, 100006. https://doi.org/10.1016/j.cscee.2020.100006

Quilliam RS, Weidmann M, Moresco V, Purshouse H, O’Hara Z, Oliver DM. COVID-19: The environmental implications of shedding SARS-CoV-2 in human faeces.  Environment International, 2020; 105790  https://doi.org/10.1016/j.envint.2020.105790

University of Stirling. (2020, May 6). Sewage poses potential COVID-19 transmission risk, experts warn. ScienceDaily. Retrieved July 6, 2020 from www.sciencedaily.com/releases/2020/05/200506133603.htm

 

 


This page was last updated on July 6, 2020.

SiteLock<